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Abstract

We start by a quick literature review (based on [3]) and an introduction
of the square-root law, before moving to Hawkes’ point processes [11] and
studying in depth the theory behind self-exciting point processes. We
then reintroduce the multivariate Hawkes process that accounts for the
dynamics of market prices through the impact of market order arrivals
at microstructural level presented in [4]. We try to rebuild the same
multivariate Hawkes process and estimate the kernels of the Hawkes’ from
the empirical conditional mean intensities provided by two different order
books using two different techniques. We then provide a computation of
the estimated market impact profile from the provided data and briefly
discuss extended models.

1 Introduction

An order book is an electronic list of buy and sell orders for a specific security or
financial instrument, organized by price level. An order book lists the number of
shares being bid or offered at each price point, or market depth. It also identifies
the market participants behind the buy and sell orders, although some choose
to remain anonymous. An order book is dynamic and constantly updated in
real time throughout the day. Exchanges such as Nasdaq refer to it as the
“continuous book.” Orders that specify execution only at market open or market
close are maintained separately. These are known as the “opening (order) book”
and “closing (order) book,” respectively. These orders can only be placed on a
predetermined price grid whose size is called the tick size. Therefore an order
corresponds to a disclosed buy/sell intention for a fixed volume and at a fixed
price. One of the most common ways of ordering orders that fall at the same
price level is the first-in-first-out time priority queue. The bid corresponds to
the highest available price for a buy order, and the ask to the lowest available
price for a sell order.

The order book information helps traders make better-informed trading de-
cisions, since they can see order imbalances, which may provide clues to the
stock’s direction in the very short term. A massive imbalance of buy orders
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Figure 1: Order Book model

compared to sell orders, for instance, may indicate a move higher in the stock
due to buying pressure. This is a form of price impact. Price impact refers
to the correlation between an incoming order (to buy or to sell) and the price
change resulting from that. As we have seen before, a buy trade imbalance
naturally pushes the price up. But how about micro-imbalances? What impact
do they have?

2 Literature review

There are several types of orders in an order book: market orders (order to buy
or sell a security immediately), stop orders (order to buy or sell a stock once the
price of the stock reaches the specified price) and limit orders (order to buy or sell
a security at a specific price or better). While limit orders aren’t the main focus
of this work, they are the basis backbone of most modern financial networks.
Historically, the task of supplying liquidity by permanently maintaining limit
orders in the book was assumed by designated market makers who, in exchange
for this service, kept a spread, namely, they offered to buy at a price lower
than their sell price, leading to profit on each transaction. All other actors were
liquidity takers, being forced to interact with a market maker. In reality, the
idea of market makers profiting on each transaction due to the bid-ask spread
is hindered by the challenge of adverse selection: if an informed trader has an
accurate prediction about the future evolution of the price (while the market
maker is less informed and has not updated his quotes accordingly), he can
profit by entering a transaction with them. Due to the nature of their activity,
market-makers are not usually affected by long-term trends in price. On the
other hand, the second class of market actors are typically in the opposing
situation. To understand the difficulties that this second class of actors faces
when executing a large order, we need to introduce the concept of liquidity risk.

2.1 Liquidity risk

The concept of Liquidity Risk reflects the extra cost incurred during a buy
(resp. sell) order that is due to the scarcity of supply (resp. demand). In the
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most extreme cases, it can even mean that it is impossible to trade an asset
due to the absence of counterpart. One striking example is that during the sub-
primes crisis, products such as CDOs became practically unsaleable. When a
trader seeks to execute a large transaction, the scarcity of instantaneous liquidity
means that the order must be executed incrementally. Hence the importance
of devising execution strategies that minimize the cost to the investor: given a
time horizon and a volume, the investor/ the broker distributes the execution
over time so as to obtain the best average execution price.

The concept of price impact is fundamental when it comes to designing
execution strategies for large orders. Since the available liquidity at a given
time is not sufficient to absorb the entire order, the trader must split his order
into several chunks to be executed incrementally. Every time a small order -
also called child order - is executed, the price is mechanically pushed in its
direction, making the average execution price higher than the decision price and
leading to the notion of execution shortfall. If the market can guess that the
trader intends to buy (resp. sell) large quantities, he can be outrun by informed
traders who push the price up (resp. down) in order to benefit from his orders.
Without such price pressure, all trading strategies would be infinitely scalable,
as the cost of trading would remain unchanged despite the size of the trade
increasing. This does not seem plausible and contradicts the fact that at any
given time, there are only limited amounts of liquidity available in the real order
book.

2.2 The empirical Square-root model

Let I(Q) be the average price variation after executing a volume Q:

I(Q) := E[PT − P0|Q]

where P0 (resp. PT ) is the price of the first (resp. last) child order. Then
the typical market impact law reads:

I(Q) = ασ

√
Q

V

Where Q is the total executed volume, V is the (average) daily traded vol-
ume, σ the daily volatility, and α a homogenization constant of order 1.

This law has been empirically verified for a large panel of markets and in-
struments. The square-root law implies that the impact of trading only depends
on the traded volume, and not on the duration of execution and the execution
path.

This figure, taken from [2], shows that the square-root market impact for-
mula is verified empirically for meta-orders with a range of sizes spanning two
to three orders of magnitude! This law should therefore be seen as a (good)
first-order approximation and a way to benchmark market impact models. It
indicates that markets are inherently fragile: the impact of small volumes is
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Figure 2: Log-log plot of the volatility-adjusted price impact vs the ratio Q/V
taken from [2]

disproportionately high. While this result may seem counter-intuitive, it is per-
fectly in accordance with the fact that the instantaneous supply of liquidity is
limited in real markets. This empirical law also asserts that impact is non-
additive but strictly concave: after having traded a Q

2 volume, the next Q
2 will

have less impact on the price.

3 Hawkes’ point processes

Trades do not arrive in evenly spaced intervals but usually arrive clustered in
time. This should be clear for anyone who has been watching an order book for
some time. Similarly, the same trade signs tend to cluster together and result
in a sequence of buy or sell orders. Various explanations for this are possible,
such as algorithmic traders who split up their orders in smaller blocks or trading
systems that react to certain exchange events.

For the sake of demonstration, we will work on dummy data representing
5000 trades between 13:10 and 19:57 on the 20 April 2013. Here is the plot of
the trade counts aggregated over a 1 minute window:

The average trade count per minute is 13, however we can make out a couple
of instances where it exceeds 50. Usually the higher trade intensity lasts a couple
of minutes and then dies down again towards the mean. In particular, the 15
minutes or so after 16:00 we can see very high trading intensity with one instance
of over 200 orders per minute, then a slow decrease of intensity over the next
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Figure 3: Trade counts aggregated over a 1 minute window

10 minutes.
The most basic way to describe arrival of event counts, such as the time

series above, is a Poisson process with one parameters λ. In a Poisson process
the expected number of events per unit of time is defined by the one parameter.
This method is widely used as it fits well to a lot of data, such as the arrival of
telephone calls in a call centre. For our purposes however this is too simple as
we need a way to explain the clustering and mean reversion.

Hawkes processes, or also called self-exciting processes, are an extension of
the basic Poisson process which aim to explain such clustering. Self-excitable
models like this are widely used in various sciences; some examples are seismol-
ogy (modelling of earthquakes and volcanic eruptions), ecology (wildfire assess-
ment [20]), neuro-science (modelling of brain spike trains which bunch together
[18]), even modelling of eruption of violence ([6] on modelling civilian deaths in
Iraq, and [10] on crime forecasting), and naturally finance and trading.

3.1 Mathematical notions

3.1.1 Definition and first examples

Definition 1. A general definition of a self-exciting process N reads:
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λ(t) = λ0(t) +

∫ t

−∞
ν(t− s) dNs

where λ0 : R −→ R+ is a deterministic base intensity and ν : R+ −→ R+

expresses the positive influence of the past events ti on the current value of the
intensity process.

Definition 2. Hawkes [11] proposes an exponential kernel:

ν(t) =

P∑
j=1

αj e
−βjt 1R+

The intensity becomes:

λ(t) = λ0(t) +
∑
ti<t

P∑
j=1

αj e
−βj(t−ti)

Here, λ0 is the base rate the process reverts to, α is the intensity jump right
after an event occurrence, and β is the exponential intensity decay. The base
rate can also be interpreted as the intensity of exogenous events (to the process)
such as news. The other parameters α and β define the clustering properties of
the process. It is usually the case that α < β which ensures that the intensity
decreases quicker than new events increase it – otherwise the process could
explode (more on this in the next subsection).

An example realization of a unidimensional Hawkes process is plotted in the
next figure for λ0 = 0.5, α = 0.1 and β = 1:

Figure 4: Intensity plot for a Hawkes process with 8 events
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3.1.2 Stationarity

Theorem 1. (Stationarity) Assuming stationarity gives E[λ(t)] = µ constant,
we can show that the stationarity condition can be written as:

P∑
j=1

αj
βj

< 1

Proof.

µ = E[λ(t)]

= λ0 + E[

∫ t

−∞
ν(t− s) dNs]

= λ0 + E[

∫ t

−∞
ν(t− s)λ(s) ds]

Using Fubini we then find that:

= λ0 +

∫ t

−∞
ν(t− s)µds

= λ0 + µ

∫ ∞
0

ν(u) du

Which gives:

µ =
λ0

1−
∫∞
0
ν(u) du

All we need to do is compute the value of the integral for the exponential kernel
to prove the stationarity theorem. Q.E.D.

The latter proof immediately gives for the one-dimensional Hawkes process.

Lemma 1. with P = 1 the unconditional expected value of the intensity process
is:

E[λ(t)] =
λ0

1− α
β

3.1.3 Multi-dimensional Hawkes’ Process

Let M ∈ N∗ and (tmi )i an M-dimensional point process. We will denote by
Nt = (N1

t , ..., N
M
t ) the associated counting process.

Definition 3. A multi-dimensional Hawkes’ process is defined with intensities
λm given by:

λm(t) = λm0 (t) +

M∑
n=0

∫ t

0

P∑
j=1

αmnj e−β
mn
j (t−s) dNn

s
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In its simplest form (i.e. P = 1 and λm0 constant) the expression above can
be rewritten:

λm(t) = λm0 +

M∑
n=0

∑
tni <t

αmnj e−β
mn
j (t−tni )

We can rewrite the above equation using vectorial notations:

λ(t) = λ0 +

∫ t

0

G(t− s)dNs

where

G(t− s) =
(
αmnj e−β

mn
j (t−s))

m,n

Assuming stationarity gives E[λ(t)] = µ a constant vector, and thus station-
ary intensities must satisfy:

µ =

(
I−

∫ ∞
0

G(u) du

)−1
λ0

Theorem 2. Stationarity of a multivariate Hawkes’ Process A sufficient con-
dition for a multivariate Hawkes’ process to be linear is that the spectral radius
of the matrix:

Γ =

∫ ∞
0

G(u) du

be strictly smaller than 1.

3.2 Simulation of a Hawkes process

3.2.1 Lewis’ Algorithm

Lewis & Shedler [14] proposes a “thinning procedure” that allows the simulation
of a point process with bounded intensity.

Theorem 3. (Basic Thinning Theorem)
Consider a one-dimensional non-homogeneous Poisson process (N∗(t))t≥0 with
rate function λ∗(t), so that the number of points N∗(T0) in a fixed interval ]0, T0]

has a Poisson distribution with parameter µ∗0 =
∫ T0

0
λ∗(s) ds.

Let t∗1,..., t∗N∗(T0)
be the points of the process in the interval ]0, T0]. Suppose that

for 0 ≤ t ≤ T0, λ(t) ≤ λ∗(t).

For i = 1,2,...,N∗(T0), delete the points ti with probability 1 − λ(t
)
i . Then the

remaining points form a non-homogeneous Poisson process (N(t))t≥0 with rate
function λ(t) in the interval ]0, T0].
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3.2.2 Ogata’s Algorithm

Ogata [17] for the simulation of Hawkes processes. Let U[0,1] denote the uni-
form distribution on the interval [0, 1] and [0, T ] the time interval on which the
process is to be simulated. We’ll assume here that P = 1.

We start by initializing:

λ∗ ← λ0(0), n← 1

We then create the first event:

Generate U ↪→ U[0,1]
s← − 1

λ∗ ln(U)
if s ≤ T then
t1 ← s

else
Go to last step

end if

The General routine is then as follows:

n← n+ 1

• Update Maximum intensity

λ∗ ← λ(tn−1) + α

λ∗ exhibits a jump of size α as an event has just occurred. λ being
left-continuous, this jump is not counted in λ(tn−1), hence the explicit
addition.

• New event

Generate U ↪→ U[0,1]
s← − 1

λ∗ ln(U)
if s ≥ T then

Go to last step
end if

• Rejection test

Generate D ↪→ U[0,1]
if s ≤ λ(s)

λ∗ then
t← s
Go through general routine again

else
λ∗ ← λ(s)
try a new date at step 2 of the general routine.

end if

Output: Retrieve the simulated process tn on [0, T ].
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3.2.3 Examples

Here’s an example using the tick [7] package. The parameters are λ0 = 1.2,
α = 0.6 and β = 0.8.

Figure 5: Simulation of a one-dimensional Hawkes process

3.3 Fitting data to a Hawkes process

3.3.1 Likelihood of a Hawkes process

The intensity path is fully defined given a set of ordered trade times t1 < ... < tn
which, in our case, are just unix timestamps of when the trades were recorded.
Given this we can easily apply Maximum Likelihood Estimation to fit the model
parameters. The log-likelihood of a simple point process N with intensity λ is
written:

logL((Nt)t) =

∫ T

0

(1− λ(s)) ds+

∫ T

0

log(λ(s)) dNs

Which in the case of a Hawkes process can be explicitely computed as (we define
Λ(t, s) :=

∫ s
t
λ(s) ds):

logL((ti)i) = tn − Λ(0, tn) +

n∑
i=1

log(λ(ti))

= tn − Λ(0, tn) +

n∑
i=1

log

[
λ0(ti) +

P∑
j=1

i−1∑
k=1

αj e
−βj(ti−tk)

]

As noted by Ogata [17], this log-likelihood function is easily computed with a

recursive formula. We observe that, by denoting Rj(i) =
∑i−1
k=1 e

−βj(ti−tk):
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Rj(i) =

i−1∑
k=1

e−βj(ti−tk)

= e−βj(ti−ti−1) (1 +Rj(i− 1))

The log-likelihood can thus be recursively computed with:

logL((Nt)t) = tn − Λ(0, tn) +

n∑
i=1

log

[
λ0(ti) +

P∑
j=1

αj Rj(i)

]
Direct computation leads then to:

Theorem 4. (Log-likelihood of a 1D-Hawkes process)

logL((Nt)t) =tn −
∫ tn

0

λ0(s) ds−
n∑
i=1

P∑
j=1

αj
βj

(1− e−βj(tn−ti))

+

n∑
i=1

log

[
λ0(ti) +

P∑
j=1

αj Rj(i)

]

We can also write the log-likelihood for a multivariate process. Let’s first
define a useful function that will be helpful later:

Definition 4. We define the following function:

Rmnj (l) =
∑
tnk<t

n
l

e−β
mn
j (tml −t

n
k )

=

{
e−β

mn
j (tml −t

m
l−1)Rmnj (l − 1) +

∑
tml−1<t

n
k<t

m
l
e−β

mn
j (tml −t

n
k ) if m 6= n

e−β
mn
j (tml −t

m
l−1)

(
1 +Rmnj (l − 1)

)
if m = n

The formula for the multivariate log-likelihood is thus:

Theorem 5. (Log-likelihood of a multivariate Hawkes process)

logLm(ti) =T −
n∑
i=1

M∑
n=1

P∑
j=1

αmnj
βmnj

(1− e−β
mn
j (T−ti))

+
∑
tml

log

[
λm0 (tml ) +

M∑
n=1

P∑
j=1

αmnj Rmnj (l)

]

where Rmnj is defined as above and Rmnj (0) = 0.
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3.3.2 Properties of the Maximum Likelihood Estimator

Ogata shows that for a stationary one-dimensional Hawkes process with constant

λ0 and P = 1, the maximum-likelihood estimator θ̂T = (λ̂0, α̂1, β̂1) is:

• Consistent, i.e. converges in probability to the true values θ = (λ0, α1, β1)
as T −→∞.

• Asymptotically normal, i.e.
√
T (θ̂T − θ) =⇒ N (0, I−1(θ))

where I−1(θ) =

(
E
[
1
λ
∂λ
∂θi

∂λ
∂θj

])
ij

• Asymptotically efficient, i.e. asymptotically reaches the lower bound of
the variance.

3.3.3 Goodness of fit

There are many ways of evaluating the goodness of fit of the estimated Hawkes
model. One is by comparing Akaike Information Criterion (AIC) values against
a homogeneous Poisson model.We define the AIC by:

Definition 5. Suppose that we have a statistical model of some data. Let k
be the number of estimated parameters in the model. Let L̂ be the maximum
value of the likelihood function for the model. Then the AIC value of the model
is the following.

AIC = 2k − 2 ln(L̂)

Another way to test how well the model fits the data is by evaluating the
residuals. Theory says [15] if the model is a good fit, then the residual process
should be homogeneous and the Quantile–Quantile plots of the simulated pro-
cess and the data should be around the 45 line.Another way of assessing the
goodness of fit of a model is the Kolmogorov-Smirnov statistical test.

Definition 6. The empirical distribution function Fn for n iid ordered obser-
vations Xi is defined as:

Fn(x) =
1

n

n∑
i=1

I[−∞,x](Xi)

where I[−∞,x] is the indicator function of [−∞, x].
The Kolmogorov-Smirnov statistic for a given cumulative distribution func-

tion F (x) is:

Dn = sup
x
|Fn(x)− F (x)|

The test then consists in accepting or rejecting the null hypothesis ”the two
samples are drawn from the same distribution” by computing the Kolmogorov-
Smirnov statistic against a fixed confidence level.
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4 First applications

Now that we know the model explains clustering of arrivals well, how can this
be applied to trading? The next steps would be to at least consider buy and sell
arrivals individually and find a way to make predictions given a fitted Hawkes
model. These intensity predictions can then form a part of a market-making or
directional strategy. Let us have a look at some basic models first.

4.1 The data

The data used is the is the intraday trade (at best bid/ask) data associated with
the most liquid maturity of Eurostoxx (FXSE) and Euro-Bund (FGBL) future
contracts. Each time series covers a a period of 800 trading days going from
May 2009 to September 2012. Here are some statistics about the database:

Statistic AskPriceAfter AskQtyAfter BidPriceAfter BidQtyAfter
Mean 7980.09 4.78 7979.16 4.78
std 29.98 4.85 30.004 5.13

We also plotted the mid-price evolution throughout a trading day for the
Eurostoxx:

Figure 6: Mid-price evolution through a single day for the Eurostoxx data

4.2 A simple model for buy and sell intensities

Hewlett [12] proposes to model the clustered arrivals of buy and sell trades
using Hawkes processes. Using the exponent B for buy variables and S for sell
variables, the model is written :
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λB(t) = λB0 +

∫ t

0

αBBe−β
BB(t−u)dNB

u +

∫ t

0

αBSe−β
BS(t−u)dNS

u

λS(t) = λS0 +

∫ t

0

αSBe−β
SB(t−u)dNB

u +

∫ t

0

αSSe−β
SS(t−u)dNS

u

Hewlett [12] then imposes some symmetry constraints, stating that mutual ex-
citation and self-excitation should be the same for both processes, which is
written:

λB0 = λS0 = λ0

αSB = αBS = αcross

βSB = βBS = βcross

αSS = αBB = αself

βSS = βBB = βself

Hewlett fits his model on two-month data of EUR/PLN transactions (no dates
given): the Hawkes model is a much better fit of the empirical data than the
Poisson model.

Figure 7: Quantile plots of integrated intensities for the Hawkes model (left)
and a Poisson model (right) on EUR/PLN buy and sell data. Reproduced from
(Hewlett 2006).

The numerical values obtained are:

λ0 = 0.0033 , αcross = 0 , αself = 0.0169 , βself = 0.0286

In other words:
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• The occurrence of a buy (resp. sell) order has an exciting effect on the

stream of buy (resp. sell) orders, with a typical half-life of log(2)
βself ≈ 24

seconds.

• The zero value of αcross tends to indicate that there is no influence of buy
orders on sell orders, and conversely.

4.3 Hawkes model for price and trades high-frequency dy-
namics

The aim of E. Bacry and J.F. Muzy in [4] is to define a realistic continuous time
microstructure price model that accounts for the impact of market orders. The
price changes are thus represented by a 4-dimensional point process:

Pt =


T−t
T+
t

N−t
N+
t


Where T+

t represents the accumulated number of market orders arrived be-
fore time t representing the best ask and T−t the best bid. And N+

t (resp. N−t )
represents the number of upward (resp. downward) price jumps at time t. The
conditional intensity vector associated to Pt is denoted by:

λt =


λT

−

t

λT
+

t

λN
−

t

λN
+

t


4.3.1 The model

The model in [4] consists in considering that Pt is a Hawkes’ process with a
Hawkes’ kernel Φt. Φt is a 4× 4 matrix whose elements are the causal positive
functions explaining the influence of a component over another component. We
can decompose it as four 2× 2 matrices in the following way:

Φt =

(
ΦTt ΦFt
ΦIt ΦNt

)
where

• ΦT (influence of T on λT ) accounts for the trade correlations (e.g. split-
ting, herding, etc...)

• ΦI (influence of T on λN ) accounts for the impact of a single trade on the
price.
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• ΦN (influence of N on λN ) accounts for the influence of past changes in
price on future changes in price (due to cancel limit orders only since price
changes due to market orders are explicitly taken into account by ΦI .

• ΦF (influence of N on λT ) accounts for the feedback influence of the price
moves on the trades.

As shown in [4] there are symmetries between the bid-ask sides for trades and
up-down directions for price jumps. The aforementioned matrices can therefore
be naturally written as:

ΦTt =

(
ΦT,st ΦT,ct
ΦT,ct ΦT,st

)
,ΦIt =

(
ΦI,st ΦI,ct
ΦI,ct ΦI,st

)

ΦNt =

(
ΦN,st ΦN,ct

ΦN,ct ΦN,st

)
,ΦFt =

(
ΦF,st ΦF,ct
ΦF,ct ΦF,st

)
In order to illustrate the 4-dimensional process we will display the price path

by defining the following quantity:

Xt = N+
t −N−t

and the cumulative trade process path:

Ut = T+
t − T−t

As shown in [4], these processes converge to correlated Brownian Motions.
This can be seen in the following figure:

Figure 8: Paths for the cumulative trade and the price processes for the Eu-
rostoxx data
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4.3.2 Estimation using the EM algorithm

Using the EMV algorithm described above, we can estimate the Hawkes’ kernels.
We can first see that the kernel estimation shows that the symmetry hypothesis
holds. This is easier to see when we plot the kernel norms.

Figure 9: EM estimation of the Hawkes’ kernels of Eurostoxx

Figure 10: EM estimation of the Hawkes’ kernels of Eurostoxx

The results are in accord with the findings in [4]. We can also use the non-
parametric estimation method described in [5] while imposing the symmetry
conditions to have better results. The kernels using this method are as follows:
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Figure 11: Estimation of the Hawkes’ kernels of Eurostoxx using the method
described in [5]

The method described in [5] has been proven to be reliable for several differ-
ent kernels. We therefore compute the intensity by resimulating a process using
the same event timestamps as in the data.

Figure 12: Intensity of the estimated Hawkes’ process of Eurostoxx using the
method described in [5]
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4.3.3 Goodness of fit

As described in [15], we can use the Quantile-Quantile plots to have an idea
about the goodness of fit of the model. But QQ-plots can only be plotted
for unidimensional data. Unfortunately the use of the Kolmogorov-Smirnov
statistical test (as indicated in [15]) is also impossible because the test needs
to be adapted for multivariate processes. Using [19] a 2-dimensional version of
the test has been implemented in python, but the multivariate version might be
presented in an forthcoming work using [8] and [16].

4.4 Market Impact for the non-labelled data

Most markets do not provide labelled data. The order flows are anonymous and
we thus cannot detect meta-orders. [4] leverages on the model built for labelled
data to define one for non-labelled data. The idea is to numerically estimate
the so-called ”response function” Rt that is defined as the variation of the price
from time 0 to time t knowing there was a trade at time 0. Thus it can be
written as:

Rt = E[N+
t −N−t |dT+

0 = 1], for t ≥ 0

It has been proven in [4] that in the case of an impulsive impact kernel, Rt can
be rewritten as:

Rt = I(1−
∫ t

0

∆ξ′u du)∀t > 0

where ∆̂ξ
′
z is a a function of the Laplace transform of the estimated kernel

imbalance and the mean intensity.
This first figure has been obtained by using the general formula in [4] defined

by:

Theorem 6. Response formula
By defining:

Rst =

∫ t

0

E[dN+
u |dT+

0 = 1]− ΛN du

Rst =

∫ t

0

E[dN−u |dT0+ = 1]− ΛN du

and dRst = rstdt, dR
c
t = rctdt. Then:(
r̂sz
r̂cz

)
= (I + D̂)(I + D̂∗)(ÊI)∗/ΛT

where the (.)∗ designates the conjugate, (̂.) the Laplace transform and D is as
defined in equation (18) of [4].
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Figure 13: Response Rt plot using the general formula

Once the parameters estimated, [4] shows that it is possible to obtain the
shape of the market impact of some particular order as shown in section 7.4. It
is worth noting that for a certain range of Laplace parameters z, we have:

M̂Iz = zνÂz

where M̂Iz is the Laplace transform of the maret impact and Az is the point
process corresponding to trade arrivals.

Under anonymous data conditions, the market impact behavior reads:

MIt ≈ t−ν if t >> T

MIt ≈ t1−ν if t << T

In this case the impact profile is as follows:
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Figure 14: Market impact for the anonymous Eurostoxx data using the formulas
presented in [4]

5 Conclusion

Through this paper we have reviewed the theory behind self-exciting point pro-
cesses and the several state-of-the-art models used for market impact profile esti-
mation. The model developed in [4] accounts for the market price microstructure
and the market impact, and has the advantage of allowing analytically closed
formulas. Our initial aim was to compare this model with other cutting-edge
models such as in [1] or [9]. Unfortunately the data was unlabelled and the
identification of meta-orders was beyond the scope of this work. Models such
us the square-root models or simple computations (e.g. VWAP) were there-
fore impossible for us. The kernel estimates weren’t back-tested by plotting
the Quantile-Quantile plots or through Kolmogorov-Smirnov statistics, which
means there was no explicit validation of our own implementation of the Hawkes’
model. This should be corrected in future works.

We thus decided to try extending the model following the propositions in
[4]. The extension of this model consists in the introduction of two additional
point processes that will account for the limit orders. The kernel estimation for
this new point process has been done and is as follows:

While interesting, this extended framework is unfortunately too intricate to
fit within the scope of this project. The limit order book theory is a very thriv-
ing field with a plethora of theories (a review can be found in [13]) and a serious
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Figure 15: Kernel estimation on the Eurostoxx data for a 6-dimensional Hawkes’
process taking into account limit orders

implementation might come in forthcoming works. However, the kernel estima-
tion method could be bettered by leveraging on statistical and deep learning
methods to estimate the kernel functions. Using neural networks to learn and
correctly estimate the various kernels Φ?,? might prove to be more accurate.
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