
Machine and Deep Learning for Credit Scoring: A compliant

approach

Abdollah RIDA

July 2nd 2019



2



Contents

1 Introduction 3

2 Model Framework and Theory 5
2.1 Mathematical notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Cross-validation, Class weights and overview of the algorithm . . . . . . . . . . . . . . 5
2.1.2 Cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Loss Reweighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Prediction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Gradient Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 XGBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Model Training, Calibration and validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Model Specifications and Estimation 11
3.1 Model Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Target Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 Primary Modeling Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.3 Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.4 Encoding Categorical Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.5 Variable Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Model Development Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.1 Main Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Dependencies for Plots and Explainability . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Key Modeling Decision and Alternative Specifications . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Final Model Form and Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Model Performance and Testing 17
4.1 Overall Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Testing on Out-of-Time Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Model Outputs, Reports and Uses 19
5.1 Model Outputs Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Model Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2.1 Explanation Models and Additive Feature Attribution Methods . . . . . . . . . . . . . 19
5.2.2 Shapley Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.3 Explainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.3 Model Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3.1 Swap Set Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3.2 Process Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.4 Summary of Key Assumptions and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4.1 Model Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4.2 Model Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3



4 CONTENTS

Appendices 25

A Proofs and Algorithms 27
A.1 Proof of the Error Estimation Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
A.2 Forward Stagewise Additive Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

B Class Imbalance 29
B.1 Why Imbalance can hurt your models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

B.1.1 Data Resampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
B.1.2 Appropriate Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



List of Figures

2.1 A CART Decision Tree from [9] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Two XGBoost trees with score as output (instead of prediction) [9] . . . . . . . . . . . . . . . 8
2.3 Boosting process for a decision tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Data Preparation Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Learning Curve and Reliability curve for the in-time dataset for the calibrated model . . . . . 13
3.3 KS Statistic plot for the out-of-time dataset for the calibrated model . . . . . . . . . . . . . . 13
3.4 Confusion Matrix and Score Distribution for the out-of-time dataset for the calibrated model 14
3.5 ROC and PR Curves for the out-of-time dataset for the calibrated model . . . . . . . . . . . 14
3.6 KS Statistic Plot for the out-of-time dataset for the model using the original 13 variables . . 15
3.7 Score distribution for our model using the original 13 variables (Left) VS BANK A’s (Right)

on the out-of-time dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.8 ROC and PR on the out-of-time dataset for the model using the original 13 variables . . . . . 15
3.9 Final model specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Learning and Reliability Curves for the in-time dataset for the final model . . . . . . . . . . . 17
4.2 KS statistic and score distribution for the final model on the out-of-time dataset for the final

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 ROC and PR on the out-of-time dataset for the final model . . . . . . . . . . . . . . . . . . . 18

5.1 Shapley Values summary for the final model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Shapley Dependence Plot between the Contract State and the Dealer State . . . . . . . . . . 21
5.3 Shapley Force plot for a high score observation . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.4 Shapley Force plot for a low score observation . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.5 Process Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

B.1 How Imbalance Affects a Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
B.2 SMOTE visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
B.3 Comparison of Logistic Regression on a dataset without and with SMOTE . . . . . . . . . . . 31
B.4 Why PR is important along AUC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5



6 LIST OF FIGURES



List of Tables

4.1 Comparison summary between our model and BANK A’s model . . . . . . . . . . . . . . . . 17

5.1 Swap set analysis between our model and BANK A’s . . . . . . . . . . . . . . . . . . . . . . . 22

7



8 LIST OF TABLES



Abstract

Credit Scoring is one of the problems banks and financial institutions have to solve on a daily basis. If
the state-of-the-art research in Machine and Deep Learning for finance has reached interesting results about
Credit Scoring models, usage of such models in a heavily regulated context ([5], [1], [3], [4]) such as the one
in banks has never been done so far.

Our work is thus a tentative to challenge the current regulatory status-quo and introduce new BASEL 2
and 3 compliant techniques, while still answering the Federal Reserve Bank and the European Central Bank
requirements.

With the help of Gradient Boosting Machines (mainly XGBoost [9]) we challenge an actual model used
by BANK A for scoring through the door Auto Loan applicants. We prove that the usage of such algorithms
for Credit Scoring models drastically improves performance and default capture rate.

Furthermore, we leverage the power of Shapley Values [16] to prove that these relatively simple models
are not as black-box as the current regulatory system thinks they are, and we attempt to explain the model
outputs and Credit Scores within the BANK A Model Design and Validation framework.
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Chapter 1

Introduction

During US subprime mortgage crisis and the European sovereign debt crisis, established financial institutions
in the USA and Europe suffered huge losses. The crisis, mainly due to misuse of credit default swaps (CDS),
raised concenrns about credit risk. Credit risk management is becoming an increasingly important factor
and attracted significant attention from researchers and market participants. In order to effectively manage
the credit risk exposures, optimize capital, answer to regulation and increase profits, financial institutions
switched their focus to developing an accurate credit scoring model.

After the introduction of the commercial scorecard, many statistical methods have been used for credit
risk assessment. Despite their wide application, these models cannot capture the complex financial relations
specific to credit risk. Related studies [20] have shown that machine learning techniques are superior to that
of statistical techniques in dealing with credit scoring problems. Currently, simple models such as Logistic
regression or simple decision trees are the most frequently used statistical models. Meanwhile, some shallow
architectures such as support vector machines (SVMs) and multi-layer perceptron (MLPs) with a single
hidden layer, have been applied to this problem [6] [15].

Shallow architectures have been shown effective in solving many simple or well-constrained problems.
However, these methods mainly focus on the outputs of classifiers at the abstract level, while neglecting the
rich information hidden in the confidence degree. Their limited modeling and representational power can
cause difficulties when dealing with more complicated real-world applications.

On the other hand Gradient Boosting, and specifically XGBoost [9], has shown promising results on
a multitude of real world problems. Beyond being the recommended algorithm for creating effective and
reliable baselines for any machine learning problem, XGBoost is: blazingly fast; handles missing values
without the use of imputation; captures non-linearities effectively. He is thus, among all other Gradient
Boosting Algorithm candidates, the best choice given our computational constraints. Moreover, the python
package comes natively equipped with the possibility of using Shapley Values [16] to explain the model
outputs and provide a more in-depth understanding of how the scoring process is done. This combination
allows us to comply to the FED’s [5] [1] and OCC’s [3] [4] requirements from credit scoring models.

To our knowledge, this is the first comprehensive study of Gradient Boosting Models in corporate and
retail/wholesale credit rating based on real bank data. Therefore, this memoir fills in such a literature gap by
introducing XGBoost as the algorithm for credit rating to generate fast and accurate individual classification
and scoring results. The goal is to provide a set of descriptive results and tests that lay a foundation for future
theoretical and empirical work on XGBoost in credit scoring in auto loan markets, but also for corporate
lending. In this memoir, we investigate the performances of different credit scoring models by conducting
experiments on a collection of auto loan data.

The remainder of the memoir is organized as follows. Chapter 2 describes the model framework and
theory examined. Chapter 3 describes the experiments performed. Chapter 4 presents the empirical results
from comparing our model to BANK A’s. Chapter 5 focuses on explainability. Appendices are provided to
introduce the imbalance problem and provide proofs for theorems we used.
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Chapter 2

Model Framework and Theory

In this section we describe the theory behind the tree based models, boosting, cross-validation and class
rebalancing. We also provide proofs that guided our modelling decisions.

2.1 Mathematical notions

2.1.1 Cross-validation, Class weights and overview of the algorithm

Before delving into the mathematical intricacies of cross-validation and class reweighting, let us first correctly
define the mathematical setting we are working in.

Let (Ω,F ,P) be a probability space. Assume that (X,Y ) is a couple of random variables defined on
(Ω,F ,P) and taking values in χ× {−1, 1} where χ is a given state space (the bank, behavioral and account
features in our case). Our model’s aim is to define a function h : χ −→ {−1, 1} called classifier such that
h(X) is the best prediction of Y in a given context. For instance, the probability of misclassification of h is:

Lmiss(h) = P (Y 6= h(X))

Note that E [X|Y ] is a random variable measurable with respect to the σ−algebra σ(X). Therefore
there exists a function η : χ ←− [−1, 1] so that E [X|Y ] = η(X) almost surely. The following theorem is a
well-known result:

Theorem 1. The Bayesian classifier h∗ defined for all x ∈ χ by:

h∗(x) =

{
1, if η(x) ≥ 0

−1, otherwise

is such that:

h∗ = argminh:χ−→{−1,1} Lmiss(h)

Proof. Let us consider the following minimization problem:

argminh:χ−→{−1,1} Lmiss(h)

The problem is equivalent to:

argminh:χ−→{−1,1} EX
[
EY |X

[
1Yi 6=h(X)

]]
Then:

EX
[
EY |X

[
1Yi 6=h(X)

]]
= EX [P(Y = 1|X)− P(Y = −1|X)]

= EX
[
116=h(X)P(Y = 1|X)− 1−16=h(X)P(Y = −1|X)

]
− EX

[
−1−16=h(X)P(Y = 1|X) + 116=h(X)P(Y = −1|X)

]
= EX

[
116=h(X)E [Y |X]

]
− EX

[
1−16=h(X)E [Y |X]

]
5



6 CHAPTER 2. MODEL FRAMEWORK AND THEORY

Thus to minimize the above expression h must verify:

h(x) =

{
1, if E [Y |X] ≥ 0

−1, otherwise

However in practice the minimization of Lmiss holds on a specific on a specific set H f classifiers (weak
decision trees in our case) which may possibly not contain the Bayes classifier. Moreover, since in most cases
the classification risk Lmiss cannot be computed nor minimized, it is instead estimated by the empirical
classification risk defined as:

L̂nmiss(h) =
1

n

n∑
i=1

1Yi 6=h(Xi)

Where (Xi, Yi) are independent observations with the same distribution as (X,Y ). The classification
problem then boils down to solving:

ĥnH = argminh∈H L̂
n
miss(h)

Using Hoeffding’s inequality, we can easily prove1 that when H = {h1, ...,M } then for all δ ≥ 0:

P

[
Lmiss (hnH) ≤ min

1≤j≤M
Lmiss (hj) +

√
2

n
log

(
2M

δ

)]
≥ 1− δ

Giving us a “confidence bound” for our predictor. In practice, this translates to:

• The more data the better the prediction

• The bigger the predictor set , the bigger the error

• A higher confidence level leads to a bigger error

2.1.2 Cross-validation

Given the mathematical context above, we can now develop the theory behind cross-validation. We have
seen that a large dictionary of predictors H and a large quantity of data gives us a better prediction, but in
our case the bigger the H the higher the risk of overfitting becomes since we are randomly generating trees.
That is why we need cross-validation. The goal of cross-validation is to assess the quality of a given machine
learning method. It computes error estimates on training and validation sets to choose the most promising
ones. One can see cross-validation as an estimate of the average risk of a Machine Learning method. It does
not yield an error bound on the predictor obtained in practice. The idea is that once we have identified
our best combination of parameters we test the performance of that set of parameters in a different context.
That is k-fold cross-validation. In k-fold cross-validation, the original sample is randomly partitioned into k
equal sized subsamples. Of the k subsamples, a single subsample is retained as the validation data for testing
the model, and the remaining k − 1 subsamples are used as training data. The cross-validation process is
then repeated k times, with each of the k subsamples used exactly once as the validation data. The k results
can then be averaged to produce a single estimation.

Mathematically this can be modelled the following way: Let κ : {1, ..., N} −→ {1, ..., N} be an indexing
function that indicates the partition to which observation i is allocated by the randomization. Denote by
f̂−k(x) the fitted function, computed with the kth part of the data removed. Then the cross-validation
estimate of prediction error is:

CV (f̂) =
1

N

n∑
i=1

L
(
yi, f̂

−κ(i)(xi)
)

1A quick proof is provided in the appendix
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Given a set of models f(x, α) indexed by a tuning parameter α, denote by f−k(x, α) the αth model fit
with the kth part of the data removed. Then for this set of models we define:

CV (f̂ , α) =
1

N

n∑
i=1

L
(
yi, f̂

−κ(i)(xi, α)
)

The function CV (f̂ , α) provides an estimate of the test error curve, and we find the tuning parameter
α̂ that minimizes it. Our final chosen model is f(x, α̂) which we will then fit to all the data. Plotting the
evolution of the cross-validation error and the training error at the same time can also give us more insight
about whether the model overfits or not.

2.1.3 Loss Reweighting

Class imbalance2 is an issue that is common in credit portfolios: the good borrowers are much more present
than the defaulting ones. This makes the classifiers too attracted to the majority class and as a result makes
training and testing errors not the same. We can use class resampling or loss reweighting to solve this issue.
Loss reweighting rewrites our loss function as:

C(Y ) l(Y, h(X))

Where C puts more emphasis on some classes than others. This means that if our testing error target is:

Eπt
[Ct(Y ) l(Y, h(X))] =

∑
k

πt(k)Ct(k)E [l(Y, h(X))|Y = k]

And our training error is:

Eπtr
[Ctr(Y ) l(Y, h(X))] =

∑
k

πtr(k)Ctr(k)E [l(Y, h(X))|Y = k]

Where π is the class probability. To make the errors the same we can combine resampling and loss
weighting by choosing:

Ctr(k) = Ct(k)
πt(k)

πtr(k)

It is worth noting that this induces a change of probability measure as all expectations are computed
under the new reweighted measure. This means that the model does not predict real probabilities (as in
probabilities under the original probability measure) anymore.

2.2 Prediction Model

2.2.1 Decision Trees

The tree ensemble model consists of a set of classification and regression trees (CART). Here’s a simple
example of a CART that classifies whether someone will like a hypothetical computer game X in Figure 2.1.

In these CARTs, a real score is associated with each of the leaves, which gives us richer interpretations
that go beyond classification. This also allows for a principled, unified approach to optimization. Usually,
a single tree is not strong enough to be used in practice. What is actually used is the ensemble model is a
forest, which sums the prediction of multiple trees together.

Boosting

The idea behind boosting is to learn a sequence of weak predictors trained on a weighted dataset with the
weights depending on the loss so far.

2A more detailed study of imbalance and how it can hurt your models is provided in appendix
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Figure 2.1: A CART Decision Tree from [9]

Figure 2.2: Two XGBoost trees with score as output (instead of prediction) [9]

A weak learner is usually a simple predictor that is: 1) easy to learn, 2) only needs to be slightly better
than a constant predictor. Some examples of weak learners are: Decision trees with few splits, Stumps
(Decisions trees with one split) and Generalized Linear Regressions with few variables. The boosting process
is therefore just a sequential linear combination of weak learners that attempts to minimize a loss.

Formally, a CART splits the space of all joint predictor variable values into disjoint partitions Rj where
j represents the terminal node of the tree. A constant γj is assigned to each partition and the predictive
rule is:

x ∈ Rj =⇒ f(x) = γj

Thus a tree can be formally expressed as:

T (x; Θ) =

J∑
j=1

γj 1x∈Rj

With parameters Θ = Rj , γj1≤j≤J . J is usually treated as a meta-parameter. The parameters are found
by minimizing the empirical risk:

Θ̂ = argminΘ

J∑
j=1

∑
xi∈Rj

L(yi, γj)

As specified in [13], this combinatorial optimization problem is complicated, and we usually settle for
approximate suboptimal solutions. The problem can be divided in two parts: Finding γj given Rj and findng
Rj .

We previously described a general strategy to find the best classifier and [13] describes one for classification
trees. In our case the Gini (or AUROC) replaces the misclassification loss in the growing of the tree. The
boosted tree model is thus the sum of such trees:

fM (x) =

M∑
m=1

T (x; Θm)
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Figure 2.3: Boosting process for a decision tree

Induced in a forward stagewise manner3. At each step in the forward stagewise procedure one must solve:

Θ̂m = argminΘm

N∑
i=1

L (yi, fm−1(xi) + T (xi; Θm))

2.2.2 Gradient Boosting

The following presents the generic gradient tree-boosting algorithm for regression. Specific algorithms are
obtained by inserting different loss criteria L(y, f(x)). The first line of the algorithm initializes to the optimal
constant model, which is just a single terminal node tree. The components of the negative gradient computed
at line 4 are referred to as generalized or pseudo residuals, r.

Algorithm 1 Gradient Tree Boosting Algorithm

1: procedure Initialize
2: f0(x)← argminγ

∑N
i=1 L(yi, γ)

3: For m = 1 to M :
4: For i = 1, ..., N compute ri,m = −

[
∂L(yi,f(xi))

∂f(xi)

]
f=fm−1

.

5: Fit a regression tree to targets ri,m giving terminal partitions Rj,m, j = 1, ..., Jm
6: For j = 1, ..., Jm compute γj,m = argminγ

∑
xi∈Rj,m

L(yi, fm−1(xi) + γ)

7: Update fm(x) = fm−1(x) +
∑Jm
j=1 γjm1x∈Rjm

8: procedure Output
9: Return f̂(x) = fM (x)

The algorithm for classification is similar. Lines 3–7 are repeated K times at each iteration m, once for
each class. The result at line 9 is K different (coupled) tree expansions fk,M (x), k = 1, ...,K. These produce
probabilities or do classification [13].

2.2.3 XGBoost

XGBoost [9] pushes Gradient Boosting to the limit. Gradient Boosting carries the principle of Gradient
Descent and Boosting to supervised learning. Gradient Boosted Models (GBMs) are trees built sequentially;
XGBoost is parallelized and is thus blazingly faster.

3The forward stagewise algorithm can be found in the appendix
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• Each new model uses Gradient Descent optimization to update/ make corrections to the weights to be
learned by the model to reach a local minimum of the cost function.

• The vector of weights assigned to each model is derived from the weights optimized by Gradient Descent
to minimize the cost function. The result of Gradient Descent is the same function of the model as the
beginning, just with better parameters.

• Gradient Boosting adds a new function to the existing function in each step to predict the output. The
result of Gradient Boosting is an altogether different function from the beginning, because the result
is the addition of multiple functions.

XGBoost’s objective function is as follows:

obj =

n∑
i=1

l(yi, ŷ
(t)
i ) +

t∑
i=1

Ω(fi)

Where Ω is the regularization term that controls model complexity and prevents overfitting. In the above
equation fi is the tree number i and yi (resp. ŷi) the true class (resp. the predicted class) of the ith data
point. l is the loss function.

2.3 Model Training, Calibration and validation

The performance measures used for training and cross-validation are ROCAUC and Log-Loss, while
Fβ-score was used for hyper-parameter tuning. Log-loss (also known as Binary Cross-Entropy) measures
absolute probabilistic difference between our predicted classes. It drives the model to make predictions that
are better at separating the two classes. It is given by the following formula:

−(y log(p) + (1− y) log(1− p))

While Fβ-score measures the effectiveness of information retrieval for recall and times precision (i.e. we
attach β2 times more importance to precision than recall). It is given by:

Fβ = (1 + β2) · precision · recall

β2 · precision + recall

As a reminder, precision and recall are given by:

precision =
true positives

true positives+ false positives

precision =
true positives

true positives+ false negatives



Chapter 3

Model Specifications and Estimation

Every Machine Learning project can be divided into 3 major steps: data preprocessing and feature engi-
neering, model building and training and finally model calibration, fine tuning and validation. Figure 3.1
shows an example of the data preparation/preprocessing pipeline that is usually used for Machine Learning
projects

Figure 3.1: Data Preparation Pipeline

3.1 Model Specifications

3.1.1 Target Variable

The model target was defined as ‘Ever 60 day past due or worse, including charge-offs and repossessions,
within the first 18 months of origination.’ Development records meeting this definition were assigned a target
value of 0 (Bad). No indeterminate performance was used. All development applicants not assigned a target
value of 0, received a target value of 1 (Good). For BANK A booked records, the performance flag provided
on the input field was used.

3.1.2 Primary Modeling Technique

The preprocessing used for the dataset is light. There are three main axes: missing values, categorical feature
encoding and variable selection. All variables go through a process of encoding using Weight of Evidence.
Measures such as KS, PR, and ROC are compared between the training and test development samples, as
well as the out-of-time validation population, to ensure the model did not over-fit the training sample. Close
values between samples indicated the model validates. Score distributions are also exampled to ensure a
smooth rank ordering of risk and a probabilistic tendency to separate the two classes. For the BANK A auto
prime model development, as a preliminary step, a Gradient Boosted Model (GBM) with a depth of six was

11
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initially run to develop a quick baseline expectation of best-case model performance (i.e. likely highest KS
attainable) prior to constraining for fair credit reporting. Several model versions were built with different
parameters and hyper-parameters. For further detail on these iterations, please see section Key Modeling
Decisions and Alternative Specifications.

3.1.3 Missing Values

No missing values imputation was done. XGBoost handles missing values the following way: at each node of
the decision tree, IF the tested value is missing THEN redirect towards the default value (which is specified
at each node). We tried building models with missing value imputation (replacing with a default value or
simply removing observations with missing values) but we noticed that the best performing model is the one
with no missing imputation.

3.1.4 Encoding Categorical Features

We used Weight of Evidence (WOE) encoding for categorical features. WOE is given by:

WOEc = log

[
Goodsc

Goodstotal

Badsc
Badstotal

]
× 100

Bad ratios will have a WOE less than zero, while good ratios will be greater than zero. Those intervals
with a WOE near zero will be neutral. We used the scikit-learn contrib library categorical-encoders that
include WOE encoding. Correspondence between categorical values and their encoding is accessible by
calling the encoder.transform method and examine the relevant features before and after encoding.

3.1.5 Variable Selection

We removed all the features that were part of Credit Bureau B’s model output, as well as all external and
bureau scores. We also removed all features that we believed would violate the Fair Credit Reporting Act.
We tried using several variable selection methods, but in the end we opted for XGBoost’s feature importance
and the underlying Shapley score [16] of each feature to do feature reduction. The model thus has no variable
selection/feature reduction before training.

3.2 Model Development Tools

Model developed in Python 3.7. Datasets provided from BANK A shared in .csv format.

3.2.1 Main Dependencies

The main requirements are: numpy, pandas scikit-learn, xgboost, category-encoders, joblib, tqdm

3.2.2 Dependencies for Plots and Explainability

These dependencies are optional (but are currently required by the code) to plot outputs and explain the
model: matplotlib, seaborn, scikitplot, shap

3.3 Key Modeling Decision and Alternative Specifications

The first model that was built was intended to actually predict the real probability of default and thus could
be used as a decision-making model. Unfortunately, its class separation power was extremely low. Figure 3.3
shows the results of this particular model. This calibration was done using the max delta step parameter.
In [9], the definition of the weight updating is the following:
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w∗j = −
∑
i∈Ij gi∑

i∈Ij hi + λ

Figure 3.2: Learning Curve and Reliability curve for the in-time dataset for the calibrated model

Where hi = ∂2
ŷ(t−1) l(yi, ŷ

(t−1)) the hessian (the reader can refer to [9] for original notations). In the cases

where our training dataset contains high imbalance, it is clear that the value of will be extremely small for
the minority class. Making the weight updates even more biased towards the majority class. max delta step
is a parameter that aims to bound the absolute value of the inverse of the hessian matrix (i.e. our weight
updates). Typical values are between 1 and 10. By introducing this parameter, we avoid the probability
measure change induced by the class re-weighting (even if we can still use it) and are thus computing real
world probabilities.

We plot the model’s performance during training and cross-validation in Figure 3.2 to prove that it does
not over fit but also that it behaves similarly. We also plot reliability curves for this model that are useful
for determining whether or not we can interpret the predicted probabilities directly as a confidence level.

Figure 3.3: KS Statistic plot for the out-of-time dataset for the calibrated model

As we can see, the model is extremely consistent and stable during training and cross-validation (that
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are done at the same time). It is also very well calibrated, especially for higher probabilities. Unfortunately
the model’s separation power is really low.

In Figure 3.4 the confusion matrix poor performance is due to it being plotted for a 50% threshold. The
distribution plot shows once again that the model performs poor class separation.

Figure 3.4: Confusion Matrix and Score Distribution for the out-of-time dataset for the calibrated model

ROC and PR curves in Figure 3.5 show the model’s performance and prove that it’s hard to correctly
separate the two classes without additional features.

Figure 3.5: ROC and PR Curves for the out-of-time dataset for the calibrated model

After the previous experiments, we decided to change the model’s parameters to more conservative ones
to force class separation. After discussing with business as well as model owners we decided to output raw
score (log-odds) as well as try the original thirteen variables used in the Credit Bureau B model. While
this cannot assess the algorithm’s added value, since constraining the available features to the tree building
algorithm will reduce the available tree space to one smaller that might not contain trees that can uncover
the non-linearities present, it can show the power of the optimization algorithm that still manages to improve
the results of the Credit Bureau B algorithm.

The distribution plot shows once again that the model performs poor class separation, yet that still
outperforms that outputted by the Credit Bureau B model.

ROC and PR curves show the model’s performance and prove that it’s hard to correctly separate the
two classes without additional features.
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Figure 3.6: KS Statistic Plot for the out-of-time dataset for the model using the original 13 variables

Figure 3.7: Score distribution for our model using the original 13 variables (Left) VS BANK A’s (Right) on
the out-of-time dataset

Figure 3.8: ROC and PR on the out-of-time dataset for the model using the original 13 variables

3.4 Final Model Form and Specifications

The final model was obtained by training the algorithm on the entire in-sample dataset and features, then
appending the most important ones to the original thirteen features used in the Credit Bureau B model.
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The final model has the following parameters and hyper parameters. We provide an explanation below for
the most meaningful and impactful ones:

Figure 3.9: Final model specifications

• alpha: L1 regularization term on weights. Increasing this parameter will make model more conservative.

• lambda: L2 regularization term on weights. Increasing this value will make model more conservative.

• gamma: minimum score change to split a node. Is useful to help avoid overfitting. The larger gamma
is, the more conservative the algorithm will be.

• max depth: maximum depth of a tree

• learning rate: Step size shrinkage used in update to prevents overfitting. After each boosting step, we
can directly get the weights of new features, and eta shrinks the feature weights to make the boosting
process more conservative.

• scale pos weight: Control the balance of positive and negative weights, useful for imbalanced classes.
A typical value to consider: sum(negative instances) / sum(positive instances).

• max delta step: Maximum delta step we allow each leaf output to be. If the value is set to 0, it
means there is no constraint. If it is set to a positive value, it can help making the update step
more conservative. Usually this parameter is not needed, but it might help in logistic regression when
class is extremely imbalanced: In extreme cases where the Hessian is nearly 0 (which is the case with
imbalance) the weights of the majority class because infinite. This parameter helps by introducing an
absolute regularization capping the weight.

• objective: binary:logistic: logistic regression for binary classification, output probability.

• min child weight: Minimum sum of instance weight (hessian) needed in a child. If the tree partition
step results in a leaf node with the sum of instance weight less than min child weight, then the building
process will give up further partitioning. The larger min child weight is, the more conservative the
algorithm will be.

• colsample bytree: is the subsample ratio of columns when constructing each tree. Subsampling occurs
once for every tree constructed.

• colsample bylevel: is the subsample ratio of columns for each level. Subsampling occurs once for every
new depth level reached in a tree. Columns are subsampled from the set of columns chosen for the
current tree.

• base score [default=0.5]: The initial prediction score of all instances, global bias. For sufficient number
of iterations, changing this value will not have too much effect.

• subsample [default=1]: Subsample ratio of the training instances. Setting it to 0.5 means that XGBoost
would randomly sample half of the training data prior to growing trees. and this will prevent overfitting.
Subsampling will occur once in every boosting iteration.



Chapter 4

Model Performance and Testing

4.1 Overall Results

We tested the methodology on a banking model for the autoloan portfolio. We used the Kolmogorov-
Smirnov (KS) statistic as well as confusion matrices, Area under Receiver Operator and Precision-Recall
Curves (AUROC) as metrics to measure performance.

Model KS in-time KS OOT AUROC in-time AUROC OOT PR in-time PR OOT
Our Model 47.8 44.91 0.81 0.80 0.093 0.093
BANK A 41.89 41.31 0.77 0.77 0.06

Table 4.1: Comparison summary between our model and BANK A’s model

While the model has a relatively good early pick up, it quickly lags behind when it comes to correctly
detecting default. Finally, we plot the model’s performance during training and cross-validation to prove
that it does not over fit but also that it behaves similarly. We also plot reliability curves for this model that
are useful for determining whether or not we can interpret the predicted probabilities directly as a confidence
level.

Figure 4.1: Learning and Reliability Curves for the in-time dataset for the final model

As we can see, the model is extremely consistent and stable during training and cross-validation (that are
done at the same time), it however needs calibration as the class imbalance (and the subsequent rebalancing)
tends to make it difficult for the model to have reasonable confidence levels.

17
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4.2 Testing on Out-of-Time Data

In addition to the out-of-sample plots, we also plot certain metrics for the original Credit Bureau B score.
The model is also better than the original model built by Credit Bureau B at separating the two classes.
This is thanks to using the logarithmic loss as an objective: The model aims to probabilistically separate
defaults from good borrowers when scoring them, thus lowering the good rates in the high default bins.

Figure 4.2: KS statistic and score distribution for the final model on the out-of-time dataset for the final
model

ROC and PR curves show the model’s performance and prove that it’s hard to correctly separate the
two classes without additional features.

Figure 4.3: ROC and PR on the out-of-time dataset for the final model
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Model Outputs, Reports and Uses

5.1 Model Outputs Overview

This model is static but does support recalibration. Recalibration can be done by either retraining the model
on the old data and the new data, the new data only, or just loading the current model then calling model.fit.

5.2 Model Outputs

This section includes the theory behind Shapley scores that can help understanding the model outputs.
Possible uses are in providing consumers with a clear, concise, empirically-derived explanation as to why
they were declined should the score be used for applicant decisioning.

5.2.1 Explanation Models and Additive Feature Attribution Methods

The ability to understand models and correctly interpret their predictions is crucial. It provides insight into
how a model may be improved, supports understanding of the process being modelled and most importantly
can help us answer regulatory and transparency requirements. While a wide variety of methods have been
proposed to address the growing model complexity and the lack of their transparency, Shapley Explainers
[16] remain the clearest of all. Shapley Explainers [16] introduce the idea of explaining a model through
another model, called an explanation model. These models are defined as any interpretable approximation
of the initial model. Let f be the original prediction model to be explained and g the explanation model.
Here we focus on local methods designed to explain a prediction f(x) based on a single input x. Explanation
models often use simplified inputs x′ that map the original inputs through a mapping function x = hx(x′).
Local methods try to ensure g(z′) ≈ f(hx(x′)) whenever z′ ≈ x′. [16] defines additive feature attribution
methods as:

Definition 1. Additive Feature Attribution Methods
Additive feature attribution methods have an explanation model that is a linear function of binary

variables:

g(z′) = φ0 +

M∑
i=1

φiz
′
i

Where z′ ∈ {0, 1}M , M is the number of simplified features and φi ∈ R

Methods with explanation models matching Definition 1 attribute an effect φi to each feature, and
summing the effects of all feature attributions approximates the output f(x) of the original model. There
are three desirable properties we’d like our explanation model to have. The first one is local accuracy: when
approximating the original model f for a specific input x, local accuracy requires the explanation model to
at least match the output of f for the simplified input x′.
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propriety 1. Local Accuracy

f(x) = g(x′) = φ0 +

M∑
i=1

φix
′
i

The explanation model g(x′) matches the original model f(x) when x = h(x′), where φ0 = f(hx(0))
represents the model output with all simplified inputs missing.

The second propriety is missingness. If the simplified inputs represent feature presence, then missingness
requires features missing in the original input to have no impact.

propriety 2. Missingness

x′i = 0 =⇒ φi = 0

Missingness constrains features where x′i = 0 to have no attributed impact.

The third property is consistency. Consistency states that if a model changes so that some simplified
input’s contribution increases or stays the same regardless of other inputs, that input’s attribution should
not decrease.

propriety 3. Consistency
Let fx(z′) = f(hx(z′)) and z′/i denote setting z′i = 0. For any two models f and f ′, if:

f ′x(z′)− f ′x(z′/i) ≥ fx(z′)− fx(z′/i)

for all inputs z′ ∈ {0, 1}M , then:

φi(f
′, x) ≥ φi(f, x)

5.2.2 Shapley Values

A surprising attribute of the class of additive feature attribution methods is the presence of a single unique
solution in this class with the three desirable properties above.

Theorem 2. Only one possible explanation model g follows Definition 1 and satisfies properties 1,2 and 3:

φi(f, x) =
∑
z′⊆x′

|z′|! (M − |z′| − 1)!

M !
(fx(z′)− fx(z′/i))

where |z′| is the number of non-zero entries in z′, and z′ ⊆ x′ represents all vectors z′ where the non-zero
entries are a subset of the non-zero entries in x′.

Theorem 2 follows from combined cooperative game theory results, where the values φi are known as
Shapley values. Young (1985) [21] demonstrated that Shapley values are the only set of values that satisfy
three axioms similar to Property 1, Property 3 and a final property that the authors have shown to be
redundant in this setting. Property 2 is required to adapt the Shapley proofs to the class of additive
distribution methods.

5.2.3 Explainability

SHAP (Shapley Additive exPlanations) is a unified approach to explain the output of any machine/deep
learning model. SHAP connects the previous game theory and local additive explainers in an easy to use
Python library that is well integrated with most algorithms in scikit-learn’s API, as well as XGBoost,
LightGBM and CatBoost. Thanks to the shap package we can plot a summary graph that gives a simplified
view of how certain feature values impact the output score of our model in terms of Shapley values. The
application of this method starts with the generation of a table of shap values for each variable in the model.
We then explore the variables shap scores and understand how they interact to output an observations final
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score. Figure 5.1 shows the summary plot. It helps us get an overview of which features are most important
for our model for every feature and for every sample. The plot sorts features by the sum of SHAP value
magnitude over all samples, and uses SHAP values to show the distribution of the impacts each feature has
on the model output (red high, blue low).

Figure 5.1: Shapley Values summary for the final model

Dependence plots are plots that let us deep dive into a specific variable and explore how it interacts
with other features: To understand how a single feature effects the output of the model we can plot the
SHAP value of that feature VS. the value of the feature on all the examples in a dataset. Since SHAP values
represent a feature’s responsibility for a change in the model output, Figure 5.2 below represents the change
in the score as ContractState (not used in the final model) changes. Vertical dispersion at a single value of
ContractState represents interaction effects with other features.

Figure 5.2: Shapley Dependence Plot between the Contract State and the Dealer State

For a single observation, we can plot a force plot that shows how each contributing feature pushes the
model output from the base value to the model output. Below in an example for a high score feature:

We can clearly see that a low APR (not used in the final model) and a low LTV are the main factors
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Figure 5.3: Shapley Force plot for a high score observation

Figure 5.4: Shapley Force plot for a low score observation

pushing the score up. The absence of negative impact features and the interaction effects are also a reason
for this high score. Below is an example of a low score observation. We can see that the main drivers in this
case are the different bankcard Revolving/Transactor/Inactive patterns. Once again this is coherent with
the SHAP summary plot.

5.3 Model Reports

5.3.1 Swap Set Analysis

The above tables show that our challenger model is able to detect more defaults without trading off a lot of
good observations.

Our BANK A
Worst 20% 6.00% 5.52%
Total 85967 85967
Bads 5157 4748
Goods 80810 81219

Our BANK A
Worst 10% 8.26% 7.02%
Total 43637 43637
Bads 3561 3065
Goods 40121 40572

Table 5.1: Swap set analysis between our model and BANK A’s
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5.3.2 Process Flow Diagram

Below is the process flow diagram describing how the model was built:

Figure 5.5: Process Flow Diagram

5.4 Summary of Key Assumptions and Limitations

5.4.1 Model Assumptions

Following assumptions were made to prepare the data and make sure holds during model implementation:

• Model was designed and developed using Auto loan origination data and hence should be used to rank
order customers during loan origination only

• Model was developed using customer records who has a Fico 8 Auto above 660 and hence the imple-
mentation of model should focus on rank ordering customers within this Fico 8 Auto score range

• Usage of class reweighting means that the model does not output default probabilities. It can thus inly
be used for rank ordering.

• Missing data holds no information beyond the fact that it is “missing” (see [6] for details about how
the algorithm handles missingness). Any missing imputation done on original data might change the
model output.

5.4.2 Model Limitations

• Model is designed to only be applied to rank order customers at origination, not for account manage-
ment

• Model can only be applied to customer with Fico 8 Auto range above 660
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Appendix A

Proofs and Algorithms

A.1 Proof of the Error Estimation Bound

Proof. We remind the reader that Hoeffding’s inequality is as follows:
Let (Xi)1≤i≤n be n independent random variables such that for all 1 ≤ i ≤ n:

P[ai ≤ Xi ≤ bi] = 1

Where ai, bi are real numbers such that ai ≤ bi.
Hoeffding’s inequality states that:

P

[∣∣∣∣∣
n∑
i=1

Xi −
n∑
i=1

E[Xi]

∣∣∣∣∣ ≥ t
]
≤ 2 exp

(
−2t2∑n

i=1(bi − ai)2

)
Let’s consider the random variable 1Yi 6=h(Xi). They are independent and bound between 0 and 1 by

design. We can thus apply Hoeffding’s inequality:

P

[∣∣∣∣∣
n∑
i=1

1Yi 6=h(Xi) −
n∑
i=1

E[1Yi 6=h(Xi)]

∣∣∣∣∣ ≥ t
]
≤ 2 exp

(
−2t2

n

)

Notice that E[1Yi 6=h(Xi)] = Lmiss(h(Xi)). Therefore, by setting t = n
2

√
2
n log 2M

δ we have that:

P

[∣∣∣∣∣
n∑
i=1

1Yi 6=h(Xi) −
n∑
i=1

E[1Yi 6=h(Xi)]

∣∣∣∣∣ ≥ n

2

√
2

n
log

2M

δ

]
≤ δ

Thus:

1− P

[
2
∣∣∣L̂nmiss(h)− Lmiss(h)

∣∣∣ ≥√ 2

n
log

2M

δ

]
≥ 1− δ

The reader can easily prove that:

Lmiss(ĥ
n
H)− min

1≤j≤M
Lmiss(hj) ≤ 2 sup

h∈H

∣∣∣L̂nmiss(h)− Lmiss(h)
∣∣∣

And finally by using the above inequality and switching to the complementary event’s probability:

P

[
Lmiss (hnH) ≤ min

1≤j≤M
Lmiss (hj) +

√
2

n
log

(
2M

δ

)]
≥ 1− δ

Q.E.D.
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A.2 Forward Stagewise Additive Modelling

Algorithm 2 Forward Stagewise Additive Modelling

1: procedure Initialize
2: f0(x)← 0
3: For m = 1 to M :
4: Compute (βm, γm) = argminβ,γ

∑N
i=1 L(yi, fm−1(xi) + β b(xi; γ)).

5: fm(x)← fm−1(x) + βm b(x; γm)



Appendix B

Class Imbalance

B.1 Why Imbalance can hurt your models

Machine learning algorithms are built to minimize errors. Since the probability of instances belonging to the
majority class is significantly high in imbalanced data set, the algorithms are much more likely to classify
new observations to the majority class. For example, in a loan portfolio with an average default rate of
5%, the algorithm has the incentive to classify new loan applications to non-default class since it would be
correct 95% of the time.

Figure B.1: How Imbalance Affects a Decision Tree

In the above-mentioned example, the cost of false negatives is significantly higher than that of a false
positive, yet they are both penalized with a similar weight. Besides class reweighting that we presented
above, several other approaches are possible.
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B.1.1 Data Resampling

A possible alternative solution to class imbalance is to alter the dataset through oversampling (increasing
the number of minority class members in the training set) or under-sampling (reduce the number of majority
samples to balance the class distribution). The advantage of over-sampling is that no information from the
original training set is lost, as all observations from the minority and majority classes are kept. On the other
hand, Under-sampling might discard important information. But oversampling is prone to overfitting. To
solve this issue, Synthetic Minority Oversampling Technique (SMOTE) [9] aims to create new instances of
the minority class by forming convex combinations of neighboring instances. This allows us to balance our
data-set without as much overfitting, as we create new synthetic examples rather than using duplicates.

Figure B.2: SMOTE visualization

Advantages:

• Allows generalization

• Adds new information

• No loss of information

Disadvantages:

• Variance due to randomness

• Need to define the target percentage and the number of neighbors

• All examples are inside the convex hull

Below is a quick comparison between two logistic regressions: one fitted on imbalanced data and another
one fitted on rebalanced data using SMOTE.
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Figure B.3: Comparison of Logistic Regression on a dataset without and with SMOTE

B.1.2 Appropriate Metrics

In an imbalanced context, the only way to appropriately assess a model’s performance is to use AUC and PR
at the same time. If we’re trying to compare two algorithms: one that tends to give a lot of false negatives
and the other one doesn’t. The number of FN only influences the FPR. Since we have class imbalance, it is
likely that both algorithms will have a lot of True Negatives. Thus, it’s pretty easy to achieve a small FPR
even for the algorithm that gives a lot of False Negatives. In the below figure the model in black is clearly
the best in terms of AUC but his low PR makes him sub-par compared to other models with slightly lower
AUC.

Figure B.4: Why PR is important along AUC
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